Reversible Behavioral Deficits in Rats during a Cycle of Demyelination-Remyelination of the Fimbria
نویسندگان
چکیده
Traumatic brain injury (TBI) selectively damages white matter. White matter damage does not produce deficits in many behavioral tests used to analyze experimental TBI. Rats were impaired on an active place avoidance task following inactivation of one hippocampal injection of tetrodotoxin. The need for both hippocampi suggests that acquisition of the active place avoidance task may require interhippocampal communication. The controlled cortical impact model of TBI demyelinates midline white matter and impairs rats on the active place avoidance task. One white matter region that is demyelinated is the fimbria that contains hippocampal commissural fibers. We therefore tested whether demyelination of the fimbria produces deficits in active place avoidance. Lysophosphatidylcholine (LPC) was injected stereotaxically to produce a cycle of demyelination-remyelination of the fimbria. At 4 days, myelin loss was observed in the fimbria of LPC-, but not saline-injected rats. Fourteen days after injection, myelin content increased in LPC-, but not saline-injected rats. Three days after injection, both saline- and LPC-injected rats had similar performance on an open field and passive place avoidance task in which the rat avoided a stationary shock zone on a stationary arena. The following day, on the active place avoidance task, LPC-injected rats had a significantly higher number of shock zone entrances suggesting learning was impaired. At 14 days after injection, saline- and LPC-injected rats had similar performance on open field and passive place avoidance. On active place avoidance, however, saline- and LPC-injected rats had a similar number of total entrances suggesting that the impairment seen at 4 days was no longer present at 14 days. These data suggest that active place avoidance is highly sensitive to white matter injury.
منابع مشابه
P 45: De- and Remyelination Affect Cognitive and Locomotor Abilities in Mice
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammatory and neurodegenerative processes. One of its pathophysiological hallmarks is demyelination, a consequence of oligodendroglial cell death leading supply shortfall and missing electrical insulation to axons. Demyelination induced consequences on neuronal network activity and subsequen...
متن کاملاثر حفاظتی تستوسترون بر بهبود نقایص شناختی القا شده توسط اتیدیوم بروماید در مدل حیوانی مالتیپل اسکلروزیس
Background: Multiple Sclerosis (MS) is a neurodegenerative disease of the central nervous system (CNS). The hippocampus is a vital center for learning and memory it is extremely vulnerable to neurodegenerative diseases. The male hormones could be neuroprotective for the CNS. The current study is an attempt to investigate the effect of testosterone on learning and spatial memory following the de...
متن کاملVitamin D3 attenuates oxidative stress and cognitive deficits in a model of toxic demyelination
Objective(s):Multiple sclerosis (MS) is a demyelinating disease. The prevalence of MS is highest where environmental supplies of vitamin D are low. Cognitive deficits have been observed in patients with MS. Oxidative damage may contribute to the formation of MS lesions. Considering the involvement of hippocampus in MS, an attempt is made in this study to investigate the effects of vitamin D3 on...
متن کاملProgesterone Alleviates Neural Behavioral Deficits and Demyelination with Reduced Degeneration of Oligodendroglial Cells in Cuprizone-Induced Mice
Demyelination occurs widely in neurodegenerative diseases. Progesterone has neuroprotective effects, is known to reduce the clinical scores and the inflammatory response. Progesterone also promotes remyelination in experimental autoimmune encephalomyelitis and cuprizone-induced demyelinating brain. However, it still remains unclear whether progesterone can alleviate neural behavioral deficits a...
متن کاملNeuroprotective Effects of Myricitrin on Cognitive Deficits in Hippacampal Demyelinated Rats
Background and purpose: Multiple sclerosis (MS) as an autoimmune disease is the most common demyelinating inflammatory disease in young people that affects the central nervous system. Myricitrin (MYR) is known to have antioxidant and neuroprotection effects, so, the current study investigated its effect on cognitive defects in rat models of MS. Materials and methods: In this experimental study...
متن کامل